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Abstract— Recent advances in imitation learning have shown
great promise for developing robust robot manipulation policies
from demonstrations. However, this promise is contingent on
the availability of diverse, high-quality datasets, which are
not only challenging and costly to collect but are often con-
strained to a specific robot embodiment. Portable handheld
grippers have recently emerged as intuitive and scalable alter-
natives to traditional robotic teleoperation methods for data
collection. However, their reliance solely on first-person view
wrist-mounted cameras often creates limitations in capturing
sufficient scene contexts. In this paper, we present MV-UMI
(Multi-View Universal Manipulation Interface), a framework
that integrates a third-person perspective with the egocentric
camera to overcome this limitation. This integration miti-
gates domain shifts between human demonstration and robot
deployment, preserving the cross-embodiment advantages of
handheld data-collection devices. Our experimental results,
including an ablation study, demonstrate that our MV-UMI
framework improves performance in sub-tasks requiring broad
scene understanding by approximately 47% across 3 tasks,
confirming the effectiveness of our approach in expanding the
range of feasible manipulation tasks that can be learned using
handheld gripper systems, without compromising the cross-
embodiment advantages inherent to such systems. Videos can
be found here: https://mv-umi.github.io

[. INTRODUCTION

Imitation Learning (IL) provides a compelling pathway
toward acquiring general robot policies capable of perform-
ing long-horizon tasks across diverse environments. This
approach, particularly through supervised methods like Be-
havioral Cloning (BC), enables robots to acquire complex
behaviors by learning to imitate human-directed actions in
response to observations. Recent advances in architectures
that better model this mapping [1], [2], [3], [4], coupled with
enhancements in embodiments and hardware integrations [5],
[6], have made this route increasingly convincing.

Recent studies on data scaling laws in imitation learning
[7] show that robot policy performance follows training
scenario diversity, emphasizing the need for extensive and
diverse data for robust policies. Data collection typically
lies between two extremes. On one end, robot teleoperation
enables the acquisition of high-quality, precise data with
minimal embodiment discrepancies. However, this method is
time-consuming and costly, as it requires an actively operated
robot. On the other end, the internet is replete with videos of
humans performing various tasks. However, substantial effort
is required to establish structured explicit mappings between
observed states and actions from these videos.

As a middle-ground, portable handheld grippers [8], [9],
[10], [11], [12] have emerged as inexpensive and intuitive
to use data collection devices. By relying exclusively on
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Fig. 1: Portable handheld gripper systems capture egocentric
wrist-mounted views that remain consistent across human
demonstrations and robot deployment. In contrast, third-
person views are human-aligned during data collection but
robot-aligned at deployment, creating an out-of-distribution
gap that MV-UMI closes.

a wrist-mounted camera, they enable non-experts to record
demonstrations without the need for a robotic manipulator.
While this egocentric viewpoint minimizes visual discrep-
ancies between training and deployment, resulting in cross-
embodiment policies, it demands that the robot maintain a
longer memory context to recall scene elements that move
out of the constraining wrist view.

In this work, we propose a novel framework that augments
the conventional wrist-mounted camera in handheld gripper
systems with a third-person camera viewpoint, without incur-
ring distributional shifts. We achieve this by performing real-
time masking of the human demonstrator in the third-person
video stream, effectively removing the operator’s presence
from the training data. As a result, the model benefits from
a broader view of the environment, while relying less on
memory for scene remembrance. A side benefit we find
of this masking is its removal of correlations between the
demonstrator’s motions and the gripper’s actions, encour-
aging the policy to focus on task-relevant cues such as
the manipulated objects rather than overfitting to human-
specific signals. We also utilize a custom-made three-jaw
gripper for some of the tasks that require greater dexterity
in this work. This design allows for greater payload weight
in comparison to other hand-held devices, at the cost of
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its volume. Schematics and instructions to reproduce the
hardware are open-sourced separately. The hardware aspect
is not a key focus in this paper.

Summary of Contributions:

1) Multi-View Cross-Embodiment Framework: MV-
UMI fuses wrist-mounted and third-person views using
SAM-2 segmentation and inpainting to eliminate do-
main shift, boosting performance in context-dependent
tasks by 47%.

2) End-to-End Open-Source System: Complete
pipeline, including hardware design, data collection,
training code, and deployment tools, is publicly
released to advance cross-embodiment manipulation
research, https://mv-umi.github.iol

II. RELATED WORKS

A. Robot-Free Data-Collection Devices

Teleoperation has long been the standard approach for
collecting demonstrations in robot learning, with systems
ranging from general-purpose input devices such as phones
and VR controllers [13], [14], [15] to more specialized
hardware-based teacher—follower systems [5], [16], [17]. A
common limitation across these approaches, however, is the
requirement of having a physical robot available during data
collection. In practice, this shifts the bottleneck from the
availability of human demonstrators to the availability of
robots, which remain costly and limited in access.

In recent years, portable handheld grippers have gained
interest as a cost-effective alternative to teleoperation for
collecting manipulation demonstrations. One of the earliest
explorations in this was demonstrated by kitchen-inspired
tongs [18], with motion capture markers to record kinematic
trajectories. Subsequent systems [19], [20] advanced this
work by incorporating a wrist-mounted camera on the device
to capture a view that would align with the observation
space during deployment on a robot. This allowed us to
avoid reliance on motion capture markers in favor of directly
extracting action-relevant features from recorded frames.

Building on these efforts, several handheld interfaces
have been proposed to further scale data collection while
improving data quality. In Dobb-E and RUM frameworks
[8], [12], a low-cost “‘stick” device is used with an iPhone
acting as a wrist-mounted sensor, capturing both RGB-
D and motion data. Meanwhile, the UMI framework [9],
[21] has become the go-to device for quick data collection,
owing to its hardware-agnostic design and imitation learning
pipeline. It utilizes a mounted GoPro camera to maximize the
field-of-view and uses visual SLAM for posture estimation.
Unlike Dobb-E’s approach however, this SLAM method
requires pre-collection calibration and depends on suffi-
ciently textured environments to maintain reliable tracking of
pose. Complementing these, Fast-UMI [11] simplifies UMI
deployment with a wrist-mounted tracking module, while
Legato [10] introduces a handheld gripper that unifies action
and observation spaces across embodiments.

TABLE [I: Comparison of State-of-the-Art Cross-
Embodiment Frameworks
Viewpoints Without Robot
Method 1st-Person | 3rd-Person Teleoperation
Dobb-E [8] v X v
UMI [9] v X v
Fast-UMI [11] v X v
Legato [10] v X v
Shadow [25] X v X
Mirage [26] X v X
MV-UMI (Ours) v v v

Beyond hand-held devices, works have explored other
approaches for demonstration collection. DexCap [22] intro-
duces a glove-based system that captures wrist and finger
motions alongside egocentric RGB-D observations. In a
complementary direction, AR2-D2 [23] removes the need for
physical robots entirely by using iPhone’s AR application to
overlays a virtual robot arm onto real-world scenes, allowing
users to record demonstrations without the need of a physical
robot.

While typical imitation learning setups [3] and datasets
[24] that are collected using teleoperation use both third-
person and egocentric viewpoints, current hand-held grippers
rely solely on wrist-mounted cameras. This limits the ability
of integrating other datasets during training, and necessitates
that policies learn long temporal dependencies for objects
that move out of view, particularly in multi-step tasks.

B. Cross-Embodiment Learning

As we advance toward generalizable models that operate
across diverse environments and platforms, enabling policies
to transfer across different robot embodiments has become a
critical area of exploration. The goal is to be able to transfer
policies from one robot embodiment to another without the
need for additional data collection.

Shadow [25] introduces a data editing technique that ad-
dresses this challenge using composite segmentation masks.
During training, the source robot’s pixels are masked and
replaced with a rendered segmentation mask of the target
robot in the corresponding end-effector pose. This alignment
ensures a consistent input distribution between training and
evaluation, enabling policy transfer despite visual differences
between robot embodiments. However, this technique as-
sumes prior knowledge of the target embodiment during
policy training, which limits its generalizability. In Mirage
[26], image-inpainting techniques are used to replace the
source robot with the target robot during evaluation. By
“painting over” the source robot collected data with an in-
painted image of the target, Mirage minimizes visual discrep-
ancies without introducing additional deployment latency.
This approach, however, also requires prior knowledge of
the target embodiment during training.

A complementary line of work [27], [28] explores design-
ing intermediate interfaces that abstract away embodiment-
specific visual cues. Im2Flow2Act introduces an object-flow
representation that tracks the motion of manipulated objects
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Fig. 2: MV-UMI data processing and deployment pipeline. During training, human demonstrations are captured from both
egocentric (wrist-mounted) and third-person cameras, with SAM-2 segmentation removing the human demonstrator and
background inpainting creating robot-compatible observations. At deployment, the trained policy processes real-time multi-

view inputs for cross-embodiment policy transfer.

in the scene and uses this as the primary input to a diffusion-
based policy for manipulation. Our MV-UMI framework
shares the same goal of minimizing embodiment bias in
demonstrations but takes a complementary approach. Rather
than restricting the observation to only certain task-relevant
signals, we instead remove embodiment-specific elements
that should not be visible, preserving the rest of the scene
context.

I1I. MV-UMI FRAMEWORK
A. Problem Setup

We frame our task as a cross-embodiment learning prob-
lem in which the human demonstrator and the robot manip-
ulator are considered distinct embodiments. Each recorded
demonstration consists of:

o Egocentric camera view: A first-person image stream,

denoted 0;*°, recorded from the camera mounted on
the handheld gripper device. This view is embodiment-
invariant by nature, i.e., it remains the same in both the
source and target settings.
o Third-person camera view:
— During data collection, the overhead view is de-
noted as oirdH and captures the entire scene, in-
cluding the human demonstrator.

— During deployment, the overhead view is denoted
as oi’rd’? and also captures the scene but with the
robot manipulator instead.

We do not formally calibrate the third-person camera
placement across different environments. This design
choice not only reduces setup effort and stays in touch
with the in-the-wild data collection, but also introduces
natural viewpoint variation that improves robustness
during deployment.

o Actions: The handheld device pose T (i.e., end-effector
position/orientation), along with the gripping width w,
recorded at each time step.

We collect trajectories of the form
{(s1,a1), (s2,a2), ..., (sr,ar)}, where s, =
(07%°, 0,%) and a; = (T}, wy) is the handheld device pose
and gripper width. Our goal is to learn a policy 7(a: | s¢)
that maps the state s; to the corresponding actions a.

B. Data Collection and Preparation

Each recording session starts with the human operator
scanning a code using the wrist-camera (done per environ-
ment, not episode). This initializes shared timestamps be-
tween the egocentric and third-person view cameras. Mean-
while, the third-person camera continuously records without
interruption throughout the entire session. Once the raw
videos are collected, we perform several offline processing
steps as described below.

1) Segmentation: The third-person footage depicts the
human demonstrator with the handheld gripper; thus, we
remove the human from each overhead frame to eliminate
correlations between the human’s movements and the robot’s
intended actions.

Specifically, we apply Segment Anything v2 (SAM>) [29]
on each overhead frame as in:

OgrdH . Oitird—mask _ SAM2 (OgrdH) (1)

This process yields a binary mask of the human region
for subsequent inpainting. To prompt SAM2, multiple points
are selected from the first frame of the first episode only:
positive points that indicate the person and negative points
indicating the gripper to ensure proper segmentation. The
keypoints of that first frame are later propagated throughout



Fig. 3: Portion of environments used with MV-UMI demonstrating robustness in in-the-wild scenes.

the entire session, without the need for manual prompting in
each episode.

2) Inpainting with a Static Reference Frame: To fill in the
masked region, we use a background reference frame oll,’egf. We

then in-paint the human pixels by blending the background
frame into the masked area via (2):

3rdrr  bg

3rd-masked __ : 3rd-mask
0; = Inpaint (ot s Opeps Ot ) 2)

This produces overhead frames that appear as if no
human was present, thereby mitigating distribution shift
when transferring to a robot that sees only itself and the
environment. As we show in our ablation study (Section |I_V|),
this human-removal step is critical for enabling successful
policy transfer, with policies trained on unsegmented data
not working robustly.

3) Time Synchronization: Although we initialize the cam-
era streams via a code scan at the start, minor frame-to-frame
offsets can still occur. Thus, each egocentric frame 0;%° is
matched to the processed overhead frame in the closest time
oi‘(dt')m“ked. This pairing ensures that both views capture the
same scene context. We then store s;, defined in (EI) along
with the corresponding action ay:

St = (0:5’0, Oirg:-)masked> (3)

4) Action Extraction: In a similar fashion to the UMI
[9], we extract actions directly from the egocentric .MP4
footage. In particular, visual SLAM using ORB-SLAM3 [30]
is used together with GoPro IMU data to estimate the pose
of the handheld device in each frame relative to the starting
pose. The gripping width is determined by measuring the
distance between two ArUco markers attached to the jaws of
the handheld gripper. These pose and gripper-width estimates
form the final action labels {a,...,ar}.

C. Policy Training

We parameterize our policy 7 via an action diffusion
CNN-based architecture that predicts multi-step trajectories
of end-effector poses and gripping widths. Rather than out-
putting a single action vector at each time step, the diffusion
model infers a short-horizon sequence.

To improve robustness against potential artifacts such as
imperfect inpainting and occlusions, we incorporate a ran-
dom dropout strategy during training. This dropout probabil-
ity p is exponentially reduced throughout the training, which
encourages the network to avoid overfitting to a particular
viewpoint or pattern. Random viewpoint dropouts and noise
patches are also performed to make the model more robust

against occlusions and incomplete observations, as shown in
Fig. @]

Algorithm 1 Policy Training with Random Dropout

1: Initialize parameters 6, dropout rate pg, decay rate A

2: for each iteration t =1,...,7T do

3 Sample raw frames {0{*°,0;"%} and ground-truth
action ay

4. Apply SAM2 on 0;"" to obtain o}"dmasked

5. if with probability (1 — p) then

6: Input both 0% and oj™m®ked o the policy

7. else

8 Randomly add noise patches to one view

9:  end if

10:  Compute predicted action: a; < mg(-)
11:  Compute loss: £ = Loss(a¢, at)

12:  Step policy parameters: 6 < 0 — VoL
13:  Decay dropout rate: p + poe

14: end for

Fig. 4: Random viewpoint dropout augmentation used during
training. We randomly mask either the egocentric or third-
person camera views with varying-sized noise patches.

D. Deployment

During deployment, we study and support two configura-
tions for handling the third-person input:

1) With robot segmentation and inpainting: Each over-
head frame ofrdR is first passed through the segmen-
tation module 0™k = SAMy(0)™") to identify

the robot manipulator. This mask is then used by the

inpainting module to blend in the static background

reference:

- b, -
o%rd masked g 3rd mask) . (4)

_ : 3rdR
= Inpaint (ot s Oret> OF

This produces input observations that are visually
consistent with the data distribution used during the
training. Since SAM2 operates at around 40 FPS on



an A100, significantly faster than the action diffusion
policy we train, the inpainting process incurs minimal
computational overhead during deployment, and the
real-time performance of the overall system is main-
tained.

Without robot segmentation: The raw third-person
frame oi’rdR is directly provided to the policy without
additional processing.

2)

We compare the effectiveness of these two deployment
modes in Section [[V]

E. Proposed Three-Jawed gripper

\ —_—

Fig. 6: Our custom three-jaw gripper system includes both
a Left: handheld mode and a Right: motorized mode. Each
jaw is about 189 mm x 94 mm in footprint size and is
printed with variable infill such that most of the jaw is soft
at 25% infill, except for the boxed areas. The gripping portion
uses 5% infill to maximize grip and the portions attached to
fixtures use a higher infill of 45% for stability.

X

We found the UMI gripper design to be challenging for
tasks that required locking an object’s rotation. To address
this, we designed a three-jaw gripper (Fig. [6) that uses two
compliant jaws printed in TPU 95A and a rigid third jaw.
Initially, all three jaws were designed to be flexible, but
this required a much larger actuation force and resulted in
unreliable performance. Adding a rigid jaw mitigated both
issues. The usage of soft, compliant jaws removed the need
for springs. For integration with a robotic manipulator, the
gripping mechanism is actuated by a linear motor. The design

(a) Bottles—-Rack—-Inserter: Inserta
glass bottle into the one rack with an empty
slot.

(b)

place a marker into

Marker—-Cup-—

allows the gripper to carry payloads up to three times its own
weight.

IV. SYSTEM EVALUATION

We evaluate the MV-UMI system across three key ques-
tions:

1) How effective is the third-person view integration
for improving policy performance in tasks requiring
context beyond the egocentric camera?

How important are the individual components of our
data processing pipeline, such as viewpoint masking
and inpainting, during training?

How necessary is inpainting at inference for maintain-
ing performance during deployment, and can the policy
operate effectively without it?

2)

3)

The tasks in Fig. 5] were selected to highlight scenarios
where the egocentric view alone may be insufficient. Each
task benefits from broader scene understanding through the
third-person view and collectively involves challenges such
as object rotations and payload handling. Specifically, the
Marker—-Cup-Placer task requires awareness of distant
containers that are often outside the egocentric field of view
at the start, as well as precise placement once the target cup
leaves the frame.

The Bottles-Rack-Inserter task demands both
dexterous alignment and payload handling capabilities that
the UMI gripper design is unable to accomplish. One rack
slot is left empty at random, requiring the model to locate it
without egocentric visibility during the trajectory. Finally,
the Cans-Shelf-Placer task emphasizes wide-scene
context, as the shelf is moved to be outside the wrist camera’s
view for most of the trajectory and on varying far positions
on the table. In practice, we find this task challenging
because the egocentric viewpoint goes out of distribution
mid-execution in the changing room setting and is often
occluded by the picked can.

1) Experimental Setup: A GoPro Hero-10 was used as
the wrist-mounted gripper camera, and an Intel RealSense
D455 was used to provide the third-person view. The third-
person camera recorded continuously, while the episodes’
beginnings and ends were determined by the timestamps of
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(c) Cans—-Shelf-Placer: Place a can
on a shelf sitting on the other side of a table.

Placer: Pick and
a cup around the table.

Fig. 5: Task descriptions in various environments for MV-UMI system.
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Fig. 7: Comparison of task success rates between UMI View Setup and our proposed MV-UMI Setup.

the GoPro camera videos. Scenes from our data-collection
process can be seen in Fig. [3] The third-person footage was
processed as detailed in Section [[II-D}

2) Ablation Study: In our ablation study, we found that the
policy trained on human-aligned data failed to complete any
task, despite often moving in sensible directions. We attribute
this failure to the distribution shift in the observation space
between training and deployment. By contrast, the policy
trained on segmented data generalized well, even when the
robot was not segmented at inference. This suggests that
removing the human prevents the model from overfitting
to spurious correlations between human motion and gripper
actions, encouraging reliance on task-relevant scene features
instead. Results from this study are summarized in Table [II}

TABLE II: Ablation study (relative to MV-UMI success rate).

Ablation ‘ Relative Performance

Without Human Segmentation 0.10
Without 3rd-Person View 0.60
Without Robot Inpainting 0.00
Without Robot Segmentation 0.80

3) Attention Map Analysis: To better understand the
source of these differences, we analyzed attention maps from
the Vision Transformer (ViT) encoder under both segmented
and unsegmented training conditions. Using a forward hook
on the multi-head self-attention layers, we captured the
query—key attention scores for the class token, which indicate
how strongly the global representation attends to individual
image patches. These scores were reshaped into a spatial
grid, normalized, and overlaid on the original frames to
visualize regions of focus.

The visualizations (Fig. directly support our ablation
findings: models trained without human segmentation fre-
quently direct attention toward embodiment-specific features
such as the operator’s hand or robot arm, explaining their
poor generalization. In contrast, our MV-UMI model con-
sistently allocates attention to objects involved in the task,
highlighting how data segmentation and inpainting guide
the policy toward more object-centric manipulation. Inter-
estingly, we also observe that the segmented model avoids
attending to embodiment cues when the third-person view is
left unsegmented during inference. We attribute this effect
to the strong correlation between the human demonstrator’s
motions and the corresponding robot actions; by removing

(a) Unsegmented model attending to embodiment and background
features.

(b) MV-UMI model focusing on the object manipulated when the
robot is segmented during runtime.

(¢) MV-UMI model focusing on the object manipulated even
when the robot is not segmented during runtime

Fig. 8: Attention maps from our ViT vision encoders under
different training and inference conditions.

the human, the model is encouraged to focus on the true
task-relevant signals.

4) Task Results: Fig. [1] shows the success rates of our
multi-view setup compared to the single-camera UMI base-
line. The egocentric wrist-mounted camera was sufficient in
initial phases of tasks when the manipulated objects remained
visible, but success rates drop sharply once the target leaves
the field of view or occludes it after being picked. In contrast,
our MV-UMI setup improves performance in these later
stages.



For example, in the Bottles-Rack-Inserter task,
the wrist-only setup typically succeeded in the picking phase
but frequently failed during placement, as it lacked awareness
of which side contained the empty slot. Similar, and in the
Marker—Cup-Placer task, failures occurred when the
cup moved outside the egocentric field of view, whereas
MV-UMI maintained awareness of its position. Finally, in
the Cans-Shelf-Placer task, the single-camera setup
struggled when the shelf was positioned out of view for most
of the trajectory.

5) Limitations: While the inclusion of a third-person view
enhances scene understanding and improves task perfor-
mance, it also introduces some challenges. First, occlusions
caused either by the human demonstrator during training or
by the robot during deployment can result in incomplete seg-
mentation under the first deployment configuration described
in Section However, we find that the second deploy-
ment configuration mitigates this issue during inference.

V. CONCLUSION

In this paper, we introduced a data collection framework
that addresses a significant limitation in current handheld
demonstration systems: the restricted perspective of wrist-
mounted cameras. Our multi-view approach integrates third-
person camera footage with egocentric observations while
mitigating domain shift through real-time person-masking
and inpainting. This enables policies to gain broader contex-
tual awareness, avoid spurious human-specific signals, and
maintain cross-embodiment compatibility between demon-
stration and deployment.
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